Fourier series: Coefficients of Fourier series
Fourier series for even and odd functions: Step 1/3
Consider the #4#-periodic function #f# determined by
\[ f(x) = -2\cdot \cos \left({{\pi\cdot x}\over{4}}\right) \phantom{xx}\text{ for }\phantom{xx} -2 \le x\lt 2 \]
Enter a simplified expression for the Fourier coefficient \(a_0\), where the Fourier series of #f# is given by \[ s(x)=\frac{a_0}{2}+\sum_{m=1}^{\infty}\left(a_m\cdot\cos\left(\frac{m\cdot\pi\cdot x}{2}\right)+b_m\sin\left(\frac{m\cdot\pi\cdot x}{2}\right)\right)\]
\[ f(x) = -2\cdot \cos \left({{\pi\cdot x}\over{4}}\right) \phantom{xx}\text{ for }\phantom{xx} -2 \le x\lt 2 \]
Enter a simplified expression for the Fourier coefficient \(a_0\), where the Fourier series of #f# is given by \[ s(x)=\frac{a_0}{2}+\sum_{m=1}^{\infty}\left(a_m\cdot\cos\left(\frac{m\cdot\pi\cdot x}{2}\right)+b_m\sin\left(\frac{m\cdot\pi\cdot x}{2}\right)\right)\]
\(a_0=\) |
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.